Minggu, 24 April 2011

Notasi dan Relasi Himpunan

Biasanya, nama himpunan ditulis menggunakan huruf besar, misalnya S, A, atau B, sementara elemen himpunan ditulis menggunakan huruf kecil (a, c, z). Cara penulisan ini adalah yang umum dipakai, tetapi tidak membatasi bahwa setiap himpunan harus ditulis dengan cara seperti itu. Tabel di bawah ini menunjukkan format penulisan himpunan yang umum dipakai.


Notasi Contoh
Himpunan Huruf besar S
Elemen himpunan Huruf kecil (jika merupakan huruf) a
Kelas Huruf tulisan tangan

\mathcal{C}
Himpunan-himpunan bilangan yang cukup dikenal,
seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.


Bilangan Asli Bulat Rasional Riil Kompleks
Notasi \mathbb{N} \mathbb{Z} \mathbb{Q} \mathbb{R}
\mathbb{C}


Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:


Simbol Arti
{} atau \varnothing Himpunan kosong
\cup Operasi gabungan dua himpunan
\cap Operasi irisan dua himpunan
\subseteq, \subset, \supseteq, \supset Subhimpunan, Subhimpunan sejati, Superhimpunan, Superhimpunan sejati
AC Komplemen
\mathcal{P}(A) Himpunan kuasa


Himpunan dapat didefinisikan dengan dua cara, yaitu:
  • Enumerasi, yaitu mendaftarkan semua anggota himpunan. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan elipsis (...).
B = \{ apel,\,jeruk,\,mangga,\,pisang\}
A = \{ a,\,b,\,c,\,...,\,y,\,z\}
\mathbb{N} = \{1,\,2,\,3,\,4,\,...\}
  • Pembangun himpunan, tidak dengan mendaftar, tetapi dengan mendeskripsikan sifat-sifat yang harus dipenuhi oleh setiap elemen himpuan tersebut.
O = \{ u\, |\, u \mbox{ adalah bilangan ganjil} \}
E = \{ x\, |\, x \in \mathbb{Z} \and (x \mbox{ mod } 2 = 0)\}
P = \{ p\, |\, p \mbox{ adalah orang yang pernah menjabat sebagai Presiden RI} \}
Notasi pembangun himpunan dapat menimbulkan berbagai paradoks, contohnya adalah himpunan berikut:
A = \{ x\, |\, x \notin A\}
Himpunan A tidak mungkin ada, karena jika A ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin A bisa mengandung anggota tersebut.

Subhimpunan

Dari suatu himpunan, misalnya A = {apel, jeruk, mangga, pisang}, dapat dibuat himpunan-himpunan lain yang elemen-elemennya adalah diambil dari himpunan tersebut.
  • {apel, jeruk}
  • {jeruk, pisang}
  • {apel, mangga, pisang}
Ketiga himpunan di atas memiliki sifat umum, yaitu setiap anggota himpunan itu adalah juga anggota himpunan A. Himpunan-himpunan ini disebut sebagai subhimpunan atau himpunan bagian dari A. Jadi dapat dirumuskan:
B adalah himpunan bagian dari A jika setiap elemen B juga terdapat dalam A.
 B \subseteq A \equiv \forall_x \, x \in B \rightarrow x \in A
Kalimat di atas tetap benar untuk B himpunan kosong. Maka \varnothing juga subhimpunan dari A.
Untuk sembarang himpunan A,
\varnothing \subseteq A
Definisi di atas juga mencakup kemungkinan bahwa himpunan bagian dari A adalah A sendiri.
Untuk sembarang himpunan A,
A \subseteq A
Istilah subhimpunan dari A biasanya berarti mencakup A sebagai subhimpunannya sendiri. Kadang-kadang istilah ini juga dipakai untuk menyebut himpunan bagian dari A, tetapi bukan A sendiri. Pengertian mana yang digunakan biasanya jelas dari konteksnya.
Subhimpunan sejati dari A menunjuk pada subhimpunan dari A, tetapi tidak mencakup A sendiri.
B \subset A \equiv B \subseteq A \wedge B \neq A

Superhimpunan

Kebalikan dari subhimpunan adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.
A \supseteq B \equiv B \subseteq A

Kesamaan dua himpunan

Himpunan A dan B disebut sama, jika setiap anggota A adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota A.
A = B \equiv \forall_x\; x \in A \leftrightarrow x \in B
atau
A = B \equiv A \subseteq B \wedge B \subseteq A
Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan A dan B adalah sama. Pertama, buktikan dahulu A adalah subhimpunan B, kemudian buktikan bahwa B adalah subhimpunan A.

Himpunan Kuasa

Himpunan kuasa atau himpunan pangkat (power set) dari A adalah himpunan yang terdiri dari seluruh himpunan bagian dari A. Notasinya adalah \mathcal{P}(A).
Jika A = {apel, jeruk, mangga, pisang}, maka \mathcal{P}(A):
{ { },
   {apel}, {jeruk}, {mangga}, {pisang},
   {apel, jeruk}, {apel, mangga}, {apel, pisang},
   {jeruk, mangga}, {jeruk, pisang}, {mangga, pisang},
   {apel, jeruk, mangga}, {apel, jeruk, pisang}, {apel, mangga, pisang}, {jeruk, mangga, pisang},
   {apel, jeruk, mangga, pisang} }
Banyaknya anggota yang terkandung dalam himpunan kuasa dari A adalah 2 pangkat banyaknya anggota A.
|\mathcal{P}(A)| = 2^{|A|}

Tidak ada komentar:

Posting Komentar